x^2+22=180

Simple and best practice solution for x^2+22=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+22=180 equation:



x^2+22=180
We move all terms to the left:
x^2+22-(180)=0
We add all the numbers together, and all the variables
x^2-158=0
a = 1; b = 0; c = -158;
Δ = b2-4ac
Δ = 02-4·1·(-158)
Δ = 632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{632}=\sqrt{4*158}=\sqrt{4}*\sqrt{158}=2\sqrt{158}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{158}}{2*1}=\frac{0-2\sqrt{158}}{2} =-\frac{2\sqrt{158}}{2} =-\sqrt{158} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{158}}{2*1}=\frac{0+2\sqrt{158}}{2} =\frac{2\sqrt{158}}{2} =\sqrt{158} $

See similar equations:

| 1,7/8y=41/2 | | (p}{4}+8=7 | | –g=–9+8g | | 3(-2)+7y=19 | | 6n–2=22 | | p}{4}+8=7 | | 18x²-15x=2x | | 2x-26=1- | | 3s=7+2s | | 3(2+x)-4x=x+163(2+x)-4x=x+16 | | 4x+12-8=2x+3+2x​​ | | –x–3=–6 | | 45=x+5 | | X+0.80x=252 | | f(P)=8P^3+3P+12 | | 1/2x-7/2=-3/8(5x-4) | | b3− 9=–8 | | −3x−20=−5 | | -4(-6v+5)=-188 | | 5|2x-7|-15=0 | | 6x-3(1-2x)=21 | | 125=x-50 | | 45p^2=18-39p | | 2v(4)-4=2v | | 326=6b+7 | | -5+5x-2x=-23 | | x-7=8(2x+3)-16 | | 50=-2.5xx= | | -2(3+x)=-4 | | 5|2x-7|=15 | | –8h=–6h+8 | | x+51+x+51+80=180 |

Equations solver categories